In the following line of code, I get the error shown below.
d3["WOE"] = np.where(((d3.DIST_EVENT==0) | (d3.DIST_NON_EVENT ==0)) ,np.nan ,np.log(d3.DIST_EVENT/d3.DIST_NON_EVENT))
I if the numerator or denominator is 0, then the condition for np.nan should satisfy and d3["WOE"] shoud be nan. Why is the following error being produced?
--------------------------------------------------------------------------- FloatingPointError Traceback (most recent call last) <ipython-input-56-a9b015683238> in <module> ----> 1 final_iv, IV = data_vars(df_leads_short,df_leads_short.close_flag) 2 IV.sort_values('IV') <ipython-input-55-5530ad13fa5a> in data_vars(df1, target) 122 count = count + 1 123 else: --> 124 conv = char_bin(target, df1[i]) 125 conv["VAR_NAME"] = i 126 count = count + 1 <ipython-input-55-5530ad13fa5a> in char_bin(Y, X) 92 d3["DIST_EVENT"] = d3.EVENT/d3.sum().EVENT 93 d3["DIST_NON_EVENT"] = d3.NONEVENT/d3.sum().NONEVENT ---> 94 d3["WOE"] = np.where(((d3.DIST_EVENT==0) | (d3.DIST_NON_EVENT ==0)) ,np.nan ,np.log(d3.DIST_EVENT/d3.DIST_NON_EVENT)) 95 #d3["WOE"] = np.log(d3.DIST_EVENT/d3.DIST_NON_EVENT) 96 d3["IV"] = np.where((d3.DIST_EVENT==0) | (d3.DIST_NON_EVENT ==0 ),np.nan ,(d3.DIST_EVENT-d3.DIST_NON_EVENT)*np.log(d3.DIST_EVENT/d3.DIST_NON_EVENT)) /opt/conda/lib/python3.7/site-packages/pandas/core/generic.py in __array_ufunc__(self, ufunc, method, *inputs, **kwargs) 1934 self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any 1935 ): -> 1936 return arraylike.array_ufunc(self, ufunc, method, *inputs, **kwargs) 1937 1938 # ideally we would define this to avoid the getattr checks, but /opt/conda/lib/python3.7/site-packages/pandas/core/arraylike.py in array_ufunc(self, ufunc, method, *inputs, **kwargs) 356 # ufunc(series, ...) 357 inputs = tuple(extract_array(x, extract_numpy=True) for x in inputs) --> 358 result = getattr(ufunc, method)(*inputs, **kwargs) 359 else: 360 # ufunc(dataframe) FloatingPointError: divide by zero encountered in log
https://stackoverflow.com/questions/67393952/np-where-condition-is-not-getting-satisfied May 05, 2021 at 09:06AM
没有评论:
发表评论