from __future__ import division import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model import pandas as pd from pandas import DataFrame, Series import seaborn as sns import math from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression %matplotlib inline data=pd.read_csv("wells.dat", delim_whitespace=True) #datas=pd.read_csv('wells.dat', header=0, sep='\s+') data.head() #data.info() #print(data) xdist=data["dist"].to_numpy() print(xdist) xdist=xdist.reshape(-1,1) print(xdist) xdist=[np.append([1],x) for x in xdist] #print(xdist) print(len(xdist)) y=list(data["switch"]) X_train,X_test,y_train,y_test=train_test_split(xdist,y,test_size=0.5,random_state=0) model=LogisticRegression() model.fit(X_train,y_train) print(model) output is just "LogisticRegression()" when it should be like "LogisticRegression(C=1.0,class_weight=None.....warm_start=False)" So i'm not sure why I'm not getting an output?
this is what the dataframe looks like:
and the data info looks like this: 

没有评论:
发表评论