2021年4月1日星期四

Fix bug python sudoku use genetic algorithms?

""" Solves a Sudoku puzzle using a genetic algorithm. This is based on a piece of coursework produced   by Christian Thomas Jacobs as part of the CS3M6 Evolutionary Computation module at the University of   Reading.  Copyright (c) 2009, 2017 Christian Thomas Jacobs  """  from functools import cmp_to_key  import numpy  import random  random.seed()    Nd = 9  # Number of digits (in the case of standard Sudoku puzzles, this is 9).      class Population(object):  """ A set of candidate solutions to the Sudoku puzzle. These candidates are also known as the chromosomes in the population. """    def __init__(self):      self.candidates = []      return    def seed(self, Nc, given):      self.candidates = []            # Determine the legal values that each square can take.      helper = Candidate()      helper.values = [[[] for j in range(0, Nd)] for i in range(0, Nd)]      for row in range(0, Nd):          for column in range(0, Nd):              for value in range(1, 10):                  if((given.values[row][column] == 0) and not (given.is_column_duplicate(column, value) or given.is_block_duplicate(row, column, value) or given.is_row_duplicate(row, value))):                      # Value is available.                      helper.values[row][column].append(value)                  elif(given.values[row][column] != 0):                      # Given/known value from file.                      helper.values[row][column].append(given.values[row][column])                      break        # Seed a new population.             for p in range(0, Nc):          g = Candidate()          for i in range(0, Nd): # New row in candidate.              row = numpy.zeros(Nd)                            # Fill in the givens.              for j in range(0, Nd): # New column j value in row i.                                # If value is already given, don't change it.                  if(given.values[i][j] != 0):                      row[j] = given.values[i][j]                  # Fill in the gaps using the helper board.                  elif(given.values[i][j] == 0):                      row[j] = helper.values[i][j][random.randint(0, len(helper.values[i][j])-1)]                # If we don't have a valid board, then try again. There must be no duplicates in the row.              while(len(list(set(row))) != Nd):                  for j in range(0, Nd):                      if(given.values[i][j] == 0):                          row[j] = helper.values[i][j][random.randint(0, len(helper.values[i][j])-1)]                g.values[i] = row            self.candidates.append(g)            # Compute the fitness of all candidates in the population.      self.update_fitness()            print("Seeding complete.")            return        def update_fitness(self):      """ Update fitness of every candidate/chromosome. """      for candidate in self.candidates:          candidate.update_fitness()      return        def sort(self):      """ Sort the population based on fitness. """      self.candidates.sort(key=cmp_to_key(self.sort_fitness))      return    def sort_fitness(self, x, y):      """ The sorting function. """      if(x.fitness < y.fitness):          return 1      elif(x.fitness == y.fitness):          return 0      else:          return -1      class Candidate(object):  """ A candidate solutions to the Sudoku puzzle. """  def __init__(self):      self.values = numpy.zeros((Nd, Nd), dtype=int)      self.fitness = None      return    def update_fitness(self):      """ The fitness of a candidate solution is determined by how close it is to being the actual solution to the puzzle. The actual solution (i.e. the 'fittest') is defined as a 9x9 grid of numbers in the range [1, 9] where each row, column and 3x3 block contains the numbers [1, 9] without any duplicates (see e.g. http://www.sudoku.com/); if there are any duplicates then the fitness will be lower. """            row_count = numpy.zeros(Nd)      column_count = numpy.zeros(Nd)      block_count = numpy.zeros(Nd)      row_sum = 0      column_sum = 0      block_sum = 0        for i in range(0, Nd):  # For each row...          for j in range(0, Nd):  # For each number within it...              row_count[self.values[i][j]-1] += 1  # ...Update list with occurrence of a particular number.            row_sum += (1.0/len(set(row_count)))/Nd          row_count = numpy.zeros(Nd)        for i in range(0, Nd):  # For each column...          for j in range(0, Nd):  # For each number within it...              column_count[self.values[j][i]-1] += 1  # ...Update list with occurrence of a particular number.            column_sum += (1.0 / len(set(column_count)))/Nd          column_count = numpy.zeros(Nd)          # For each block...      for i in range(0, Nd, 3):          for j in range(0, Nd, 3):              block_count[self.values[i][j]-1] += 1              block_count[self.values[i][j+1]-1] += 1              block_count[self.values[i][j+2]-1] += 1                            block_count[self.values[i+1][j]-1] += 1              block_count[self.values[i+1][j+1]-1] += 1              block_count[self.values[i+1][j+2]-1] += 1                            block_count[self.values[i+2][j]-1] += 1              block_count[self.values[i+2][j+1]-1] += 1              block_count[self.values[i+2][j+2]-1] += 1                block_sum += (1.0/len(set(block_count)))/Nd              block_count = numpy.zeros(Nd)        # Calculate overall fitness.      if (int(row_sum) == 1 and int(column_sum) == 1 and int(block_sum) == 1):          fitness = 1.0      else:          fitness = column_sum * block_sum            self.fitness = fitness      return        def mutate(self, mutation_rate, given):      """ Mutate a candidate by picking a row, and then picking two values within that row to swap. """        r = random.uniform(0, 1.1)      while(r > 1): # Outside [0, 1] boundary - choose another          r = random.uniform(0, 1.1)        success = False      if (r < mutation_rate):  # Mutate.          while(not success):              row1 = random.randint(0, 8)              row2 = random.randint(0, 8)              row2 = row1                            from_column = random.randint(0, 8)              to_column = random.randint(0, 8)              while(from_column == to_column):                  from_column = random.randint(0, 8)                  to_column = random.randint(0, 8)                   # Check if the two places are free...              if(given.values[row1][from_column] == 0 and given.values[row1][to_column] == 0):                  # ...and that we are not causing a duplicate in the rows' columns.                  if(not given.is_column_duplicate(to_column, self.values[row1][from_column])                     and not given.is_column_duplicate(from_column, self.values[row2][to_column])                     and not given.is_block_duplicate(row2, to_column, self.values[row1][from_column])                     and not given.is_block_duplicate(row1, from_column, self.values[row2][to_column])):                                        # Swap values.                      temp = self.values[row2][to_column]                      self.values[row2][to_column] = self.values[row1][from_column]                      self.values[row1][from_column] = temp                      success = True        return success      class Given(Candidate):  """ The grid containing the given/known values. """    def __init__(self, values):      self.values = values      return        def is_row_duplicate(self, row, value):      """ Check whether there is a duplicate of a fixed/given value in a row. """      for column in range(0, Nd):          if(self.values[row][column] == value):             return True      return False    def is_column_duplicate(self, column, value):      """ Check whether there is a duplicate of a fixed/given value in a column. """      for row in range(0, Nd):          if(self.values[row][column] == value):             return True      return False    def is_block_duplicate(self, row, column, value):      """ Check whether there is a duplicate of a fixed/given value in a 3 x 3 block. """      i = 3*(int(row/3))      j = 3*(int(column/3))        if((self.values[i][j] == value)         or (self.values[i][j+1] == value)         or (self.values[i][j+2] == value)         or (self.values[i+1][j] == value)         or (self.values[i+1][j+1] == value)         or (self.values[i+1][j+2] == value)         or (self.values[i+2][j] == value)         or (self.values[i+2][j+1] == value)         or (self.values[i+2][j+2] == value)):          return True      else:          return False      class Tournament(object):  """ The crossover function requires two parents to be selected from the population pool. The Tournament class is used to do this.    Two individuals are selected from the population pool and a random number in [0, 1] is chosen. If this number is less than the 'selection rate' (e.g. 0.85), then the fitter individual is selected; otherwise, the weaker one is selected.  """    def __init__(self):      return        def compete(self, candidates):      """ Pick 2 random candidates from the population and get them to compete against each other. """      c1 = candidates[random.randint(0, len(candidates)-1)]      c2 = candidates[random.randint(0, len(candidates)-1)]      f1 = c1.fitness      f2 = c2.fitness        # Find the fittest and the weakest.      if(f1 > f2):          fittest = c1          weakest = c2      else:          fittest = c2          weakest = c1        selection_rate = 0.85      r = random.uniform(0, 1.1)      while(r > 1):  # Outside [0, 1] boundary. Choose another.          r = random.uniform(0, 1.1)      if(r < selection_rate):          return fittest      else:          return weakest    class CycleCrossover(object):  """ Crossover relates to the analogy of genes within each parent candidate mixing together in the hopes of creating a fitter child candidate. Cycle crossover is used here (see e.g. A. E. Eiben, J. E. Smith. Introduction to Evolutionary Computing. Springer, 2007). """    def __init__(self):      return    def crossover(self, parent1, parent2, crossover_rate):      """ Create two new child candidates by crossing over parent genes. """      child1 = Candidate()      child2 = Candidate()            # Make a copy of the parent genes.      child1.values = numpy.copy(parent1.values)      child2.values = numpy.copy(parent2.values)        r = random.uniform(0, 1.1)      while(r > 1):  # Outside [0, 1] boundary. Choose another.          r = random.uniform(0, 1.1)                # Perform crossover.      if (r < crossover_rate):          # Pick a crossover point. Crossover must have at least 1 row (and at most Nd-1) rows.          crossover_point1 = random.randint(0, 8)          crossover_point2 = random.randint(1, 9)          while(crossover_point1 == crossover_point2):              crossover_point1 = random.randint(0, 8)              crossover_point2 = random.randint(1, 9)                        if(crossover_point1 > crossover_point2):              temp = crossover_point1              crossover_point1 = crossover_point2              crossover_point2 = temp                        for i in range(crossover_point1, crossover_point2):              child1.values[i], child2.values[i] = self.crossover_rows(child1.values[i], child2.values[i])        return child1, child2    def crossover_rows(self, row1, row2):       child_row1 = numpy.zeros(Nd)      child_row2 = numpy.zeros(Nd)        remaining = list(range(1, Nd+1))      cycle = 0            while((0 in child_row1) and (0 in child_row2)):  # While child rows not complete...          if(cycle % 2 == 0):  # Even cycles.              # Assign next unused value.              index = self.find_unused(row1, remaining)              start = row1[index]              remaining.remove(row1[index])              child_row1[index] = row1[index]              child_row2[index] = row2[index]              next = row2[index]                            while(next != start):  # While cycle not done...                  index = self.find_value(row1, next)                  child_row1[index] = row1[index]                  remaining.remove(row1[index])                  child_row2[index] = row2[index]                  next = row2[index]                cycle += 1            else:  # Odd cycle - flip values.              index = self.find_unused(row1, remaining)              start = row1[index]              remaining.remove(row1[index])              child_row1[index] = row2[index]              child_row2[index] = row1[index]              next = row2[index]                            while(next != start):  # While cycle not done...                  index = self.find_value(row1, next)                  child_row1[index] = row2[index]                  remaining.remove(row1[index])                  child_row2[index] = row1[index]                  next = row2[index]                                cycle += 1                return child_row1, child_row2             def find_unused(self, parent_row, remaining):      for i in range(0, len(parent_row)):          if(parent_row[i] in remaining):              return i    def find_value(self, parent_row, value):      for i in range(0, len(parent_row)):          if(parent_row[i] == value):              return i      class Sudoku(object):  """ Solves a given Sudoku puzzle using a genetic algorithm. """    def __init__(self):      self.given = None      return    def load(self, path):      # Load a configuration to solve.      with open(path, "r") as f:          values = numpy.loadtxt(f).reshape((Nd, Nd)).astype(int)          self.given = Given(values)      return    def save(self, path, solution):      # Save a configuration to a file.      with open(path, "w") as f:          numpy.savetxt(f, solution.values.reshape(Nd*Nd), fmt='%d')      return        def solve(self):      Nc = 1000  # Number of candidates (i.e. population size).      Ne = int(0.05*Nc)  # Number of elites.      Ng = 1000  # Number of generations.      Nm = 0  # Number of mutations.            # Mutation parameters.      phi = 0      sigma = 1      mutation_rate = 0.06        # Create an initial population.      self.population = Population()      self.population.seed(Nc, self.given)        # For up to 10000 generations...      stale = 0      for generation in range(0, Ng):                print("Generation %d" % generation)                    # Check for a solution.          best_fitness = 0.0          for c in range(0, Nc):              fitness = self.population.candidates[c].fitness              if(fitness == 1):                  print("Solution found at generation %d!" % generation)                  print(self.population.candidates[c].values)                  return self.population.candidates[c]                # Find the best fitness.              if(fitness > best_fitness):                  best_fitness = fitness            print("Best fitness: %f" % best_fitness)            # Create the next population.          next_population = []            # Select elites (the fittest candidates) and preserve them for the next generation.          self.population.sort()          elites = []          for e in range(0, Ne):              elite = Candidate()              elite.values = numpy.copy(self.population.candidates[e].values)              elites.append(elite)            # Create the rest of the candidates.          for count in range(Ne, Nc, 2):              # Select parents from population via a tournament.              t = Tournament()              parent1 = t.compete(self.population.candidates)              parent2 = t.compete(self.population.candidates)                            ## Cross-over.              cc = CycleCrossover()              child1, child2 = cc.crossover(parent1, parent2, crossover_rate=1.0)                            # # Mutate child1.              # old_fitness = child1.fitness              # success = child1.mutate(mutation_rate, self.given)              # child1.update_fitness()              # if(success):              #     Nm += 1              #     if(child1.fitness > float(old_fitness)):  # Used to calculate the relative success rate of mutations.              #         phi = phi + 1                            # Mutate child2.              old_fitness = child2.fitness              success = child2.mutate(mutation_rate, self.given)              child2.update_fitness()              if(success):                  Nm += 1                  if(child2.fitness > old_fitness):  # Used to calculate the relative success rate of mutations.                      phi = phi + 1                            # Add children to new population.              next_population.append(child1)              next_population.append(child2)            # Append elites onto the end of the population. These will not have been affected by crossover or mutation.          for e in range(0, Ne):              next_population.append(elites[e])                        # Select next generation.          self.population.candidates = next_population          self.population.update_fitness()                    # Calculate new adaptive mutation rate (based on Rechenberg's 1/5 success rule). This is to stop too much mutation as the fitness progresses towards unity.          if(Nm == 0):              phi = 0  # Avoid divide by zero.          else:              phi = phi / Nm                    if(phi > 0.2):              sigma = sigma/0.998          elif(phi < 0.2):              sigma = sigma*0.998            mutation_rate = abs(numpy.random.normal(loc=0.0, scale=sigma, size=None))          Nm = 0          phi = 0            # Check for stale population.          self.population.sort()          if(self.population.candidates[0].fitness != self.population.candidates[1].fitness):              stale = 0          else:              stale += 1            # Re-seed the population if 100 generations have passed with the fittest two candidates always having the same fitness.          if(stale >= 100):              print("The population has gone stale. Re-seeding...")              self.population.seed(Nc, self.given)              stale = 0              sigma = 1              phi = 0              Nm = 0              mutation_rate = 0.06            print("No solution found.")      return None        s = Sudoku()  s.load("puzzle_mild.txt")  solution = s.solve()  if(solution):  s.save("solution.txt", solution)  

I tried to run the code attached to solving the genetic algorithm sudoku problem but the error goes like this. I think the code is written in python2 and I am trying to convert it back to python3 so that I can run it

I also don't understand why is there a type of "NoneType" in the program and is there a way to convert it to a "Float" type for comparison.

File puzzle_mild.txt

0 3 0 0 7 0 0 5 0 5 0 0 1 0 6 0 0 9 0 0 1 0 0 0 4 0 0 0 9 0 0 5 0 0 6 0 6 0 0 4 0 2 0 0 7 0 4 0 0 1 0 0 3 0 0 0 2 0 0 0 8 0 0 9 0 0 3 0 5 0 0 2 0 1 0 0 2 0 0 7 0  

enter image description here

https://stackoverflow.com/questions/66913304/fix-bug-python-sudoku-use-genetic-algorithms April 02, 2021 at 09:06AM

没有评论:

发表评论