I notice the layer LogisticEndpoint in https://www.tensorflow.org/guide/keras/train_and_evaluate#automatically_setting_apart_a_validation_holdout_set . The document build a model like this :
import numpy as np inputs = keras.Input(shape=(3,), name="inputs") targets = keras.Input(shape=(10,), name="targets") logits = keras.layers.Dense(10)(inputs) predictions = LogisticEndpoint(name="predictions")(logits, targets) model = keras.Model(inputs=[inputs, targets], outputs=predictions) model.compile(optimizer="adam") # No loss argument! data = { "inputs": np.random.random((3, 3)), "targets": np.random.random((3, 10)), } model.fit(data) My question is that how to use this model when inference , since we don't know the target when we use model.predict
没有评论:
发表评论