I have a dataframe with X position data for each participant, and three grouping variables (with each X array being 1000 points in length). Preview of dataframe:
X Z participantNum obsScenario startPos targetPos 16000 -16.0 -5.0 6950203 2 2 3 16001 -16.0 -5.0 6950203 2 2 3 16002 -16.0 -5.0 6950203 2 2 3 16003 -16.0 -5.0 6950203 2 2 3 16004 -16.0 -5.0 6950203 2 2 3 16005 -16.0 -5.0 6950203 2 2 3 16006 -16.0 -5.0 6950203 2 2 3 16007 -16.0 -5.0 6950203 2 2 3 16008 -16.0 -5.0 6950203 2 2 3 16009 -16.0 -5.0 6950203 2 2 3 I need to pass all of the X data into a function, with the X data grouped by the 3 grouping variables and with each X data array in its own column. Right now they are all stacked on top of each other.
These are the functions: (It goes through calc_confidence_interval first)
def mean_confidence_interval(data, confidence=0.95): a = 1.0*np.array(data) n = len(a) m, se = np.mean(a), scipy.stats.sem(a) h = se * scp.stats.t._ppf((1+confidence)/2., n-1) return m, m+h, m-h def calc_confidence_interval(data): mean_ci = [] top_ci =[] bottom_ci=[] for column in data.T: m, t,b=mean_confidence_interval(column) mean_ci.append(m); top_ci.append(t);bottom_ci.append(b) return mean_ci, top_ci, bottom_ci And I'm trying to make something like this work:
calc_CI = df.groupby(['obsScenario', 'startPos', 'targetPos'])['X'].apply(calc_confidence_interval) calc_CI = calc_CI.join(calc_CI.rename('calc_CI'), on = ['obsScenario', 'startPos', 'targetPos']) But I'm getting the error: TypeError: object of type 'numpy.float64' has no len(), because it is currently passing the X data as a single array rather than separate columns for each participant, grouped by the three grouping variables.
## Traceback ```python -------------------------------------------------------------------------- calc_CI = allDataF.groupby(['obsScenario', 'startPos', 'targetPos'])['X'].apply(calc_confidence_interval) File "/opt/anaconda3/lib/python3.8/site-packages/pandas/core/groupby/generic.py", line 226, in apply return super().apply(func, *args, **kwargs) File "/opt/anaconda3/lib/python3.8/site-packages/pandas/core/groupby/groupby.py", line 870, in apply return self._python_apply_general(f, self._selected_obj) File "/opt/anaconda3/lib/python3.8/site-packages/pandas/core/groupby/groupby.py", line 892, in _python_apply_general keys, values, mutated = self.grouper.apply(f, data, self.axis) File "/opt/anaconda3/lib/python3.8/site-packages/pandas/core/groupby/ops.py", line 213, in apply res = f(group) File "/Users/lillyrigoli/Desktop/PhD/PhD_Projects/RouteSelection/Analysis_RS/load_filter_plot_CI_RS.py", line 221, in calc_confidence_interval m, t,b=mean_confidence_interval(column) File "/Users/lillyrigoli/Desktop/PhD/PhD_Projects/RouteSelection/Analysis_RS/load_filter_plot_CI_RS.py", line 210, in mean_confidence_interval n = len(a) TypeError: object of type 'numpy.float64' has no len() The functions return the confidence intervals (top, middle & bottom) as lists.
The output I should get at the end is like this, with the output (mean_ci, top_ci, bottom_ci arrays) for each grouping combination.
obsScenario startPos targetPos mean_ci top_ci bottom_ci 0 1 1 [array of length 1000] [array of length 1000] [array of length 1000] 0 2 2 [array of length 1000] [array of length 1000] [array of length 1000] 1 1 1 [array of length 1000] [array of length 1000] [array of length 1000] 1 2 2 [array of length 1000] [array of length 1000] [array of length 1000] https://stackoverflow.com/questions/66057266/pass-arrays-from-dataffame-into-function-with-arrays-grouped-and-flattened February 05, 2021 at 11:42AM
没有评论:
发表评论