I want to get all the values for (a) particular day-time. I need this to calculate some sort of historical mean/std/.., which is day- and time-dependent from a pandas data frame. I rather explain the problem in codes. Let's say I have this dataframe:
df_datetime = pd.date_range(start='2010-01-01', end='2020-12-31', freq='30min') df_ts = pd.DataFrame(data=np.random.random((df_datetime.shape)), index=df_datetime, columns=['Value']) print(df_ts) Value 2010-01-01 00:00:00 0.148690 2010-01-01 00:30:00 0.639023 2010-01-01 01:00:00 0.339820 2010-01-01 01:30:00 0.226052 2010-01-01 02:00:00 0.893710 ... ... 2020-12-30 22:00:00 0.473275 2020-12-30 22:30:00 0.183648 2020-12-30 23:00:00 0.077264 2020-12-30 23:30:00 0.085483 2020-12-31 00:00:00 0.311474 [192817 rows x 1 columns]
Now I want all the values in df for, let's say, this day-time: XXXX-12-30 22:00:00
. XXXX
mean all years included. The way I do it is like this:
df_sample = df_ts.loc[(df_ts.index.month==12) & (df_ts.index.day==30) & (df_ts.index.hour==22) & (df_ts.index.minute==0)] print(df_sample) Value 2010-12-30 22:00:00 0.073103 2011-12-30 22:00:00 0.525378 2012-12-30 22:00:00 0.247066 2013-12-30 22:00:00 0.192340 2014-12-30 22:00:00 0.968341 2015-12-30 22:00:00 0.458732 2016-12-30 22:00:00 0.709913 2017-12-30 22:00:00 0.706581 2018-12-30 22:00:00 0.994208 2019-12-30 22:00:00 0.172340 2020-12-30 22:00:00 0.473275
which works fine for a single day-time, but I don't know an elegant way (not for loop) of doing this for several day-times, let's say for example:
[`XXXX-12-30 22:00:00`, `XXXX-12-30 22:30:00`, `XXXX-12-30 23:00:00`]
https://stackoverflow.com/questions/66146215/how-to-get-all-the-historical-values-for-particular-days-times-in-pandas-datafra February 11, 2021 at 06:45AM
没有评论:
发表评论